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Abstract. Resistivity measurements carried out in the temperature range 80 m K  to 1 K on  
silicon bolometers-phosphorous doped by ion implantation-at concentrations near the 
metal-insulator transition, exhibit variable range hopping (VRH) conduction in the whole 
observed temperature range, with a T-”’ dependence, in accordance with the Coulomb 
interaction model for low-temperature conductivity in disordered systems. Samples which 
apparently show a different behaviour, intermediate between VRH and metallic conduction, 
can be modelled by a metallic resistance in parallel with an active layer which follows the 
classic exp(T,,/T)l” law. The observed behaviour can be explained in terms of residual 
radiation damage induced by the ion implantation process. 

1. Introduction 

Silicon bolometers have found important applications in the fields of molecular beam 
spectroscopy [ 11 and infrared radiation measurement [2], More recently, the Wisconsin 
University group, in collaboration with the Goddard Space Flight Center [3], have 
obtained very sensitive devices, in the range 10--20eV, which are suitable for high- 
resolution cosmic x-ray spectroscopy. At this point silicon bolometers became potential 
candidatesfor the neutrino mass determination [4]. Realization, construction and proper 
characterization of the devices cannot omit consideration of the basic understanding of 
the electrical properties of the material. The present paper aims to investigate this latter 
aspect, in view of the peculiar ion-implantation doping technique. 

The theory of electrical conductivity in disordered systems relies on Mott’s original 
model of the metal-insulator (MI) transition [5] which predicts a relationship between 
resistivity and temperature of the form 

p exp( T~ / T )  

in the temperature range (<3-5 K) where variable range hopping (VRH) conduction 
occurs. Subsequently, after Pollak’s work [6], Efros and Shklovskii [7] developed a 
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model in which the Coulomb interaction between carriers is taken into account, leading 
to a resistivity-temperature dependence of the form 

p exp(T*/T)'/'. 

In the previous equations, both T I  and T ,  are constants which depend on the correlation 
length 5 of the impurity wavefunction. Experimental data have been reported in the 
literature [8] and they show a large spread in the value y of the exponent in TY, 
ranging from less than 0.20 up to about 0.70, depending upon substrate type and sample 
preparation. 

In this work we present our results concerning ion-implanted silicon bolometers 
aiming to redress the uncertainty about the exponent y in the general expression 

P = Po exP(T" /T)~*  

2. Experimental procedure 

Bolometers have been constructed on single crystal, Czochralski-grown p-type (100) 
silicon slices of 4 inch diameter and 0.5 mm thickness. The silicon substrate is boron- 
doped at a nominal concentration of 5-7 X ions/cm3. The thermistor is obtained by 
ion implantation at doses which correspond to the critical concentrations of the MI 
transition. They are 3.74 x 10'8cm-3 for Si : P [9] and 8.55 X 10" cm-3 for Si :As  [lo]. 
The implantation energy was adjusted in order to have a box impurity profile, i.e. a 
constant concentration up to a depth of 0.5 pm. After ion implantation all samples were 
annealed at 920 "C for 30 min in N 2 0 2 .  After contact opening and metal patterning, each 
bolometer was cut into a 1 mm x 0.5 mm dice. For more details about the technology 
used to construct the bolometers, the reader is referred to [ll]; their performances as 
radiation detectors have been reported in [12]. 

Electrical connection with the devices was made using gold wires, which also provide 
the thermal link to a copper holder maintained at cryogenic temperatures inside an 
Oxford Instruments Hes4 dilution refrigerator. Resistivity measurement was performed 
at 30 Hz with an AC resistance bridge from Schaeffer. Total power dissipation inside the 
bolometer was kept below 10 pW in order to avoid any appreciable overheating. The 
holder temperature is monitored and controlled by means of a Lakeshore carbon-glass 
calibrated thermistor. Temperature accuracy was better than ?2% over all the range 
investigated. 

An accurate determination of the dopant concentration in diffusion-doped or ingot 
samples has been reported to be obtained from the resistivity ratio p(4.2 K)/p(296 K) 

In our case, since the implantation profile was achieved by means of multiple implants 
and doubly ionized ions, first a calibration of the dopant profile shape was obtained from 
a C-V plot and threshold voltage measurements. Secondly, the complete activation of 
the implanted dose was checked with a four-point probe and Hall effect measurements 
at room temperature. 

In addition, owing to possible systematic errors in the ion implanter set-up dose with 
respect to the expected nominal concentration value, different slices were implanted 
with slightly different doses, ranging from completely metal samples to completely 
insulator samples. We are then fairly confident that the samples reported here are doped 
across the critical concentration and they are good representatives of the MI transition. 

~ 3 1 .  
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Figure 1. Resistance against temperature 
of S i : P  samples ion implanted at the 

0.0 200. LOO. 600. 800. nominal critical concentration of 
T(mK) 3.74 x tO'xcm-3, 

Optimization of the p implantation conditions has been reported in [24]. We wish to 
emphasise that samples originating from the same slice are indistinguishable at  room 
temperature in the sense that their resistivity is equal within experimental error ( 2  1%). 

3. Data analysis and results 

The experimental data obtained from low-temperature resistivity measurements on a 
set of samples taken from the same slice of P-implanted silicon bolometers are reported 
in figure 1. T h e  samples are nominally identical but they exhibit a remarkably different 
behaviour, with a resistance spread over five orders of magnitude. In spite of this, the 
samples a re  grouped in three distinct classes, which have been labeled I ,  11, and 111. 
Group I samples behave like semi-insulating conductors. Group I11 samples exhibit a 
metallic-type conduction. Group I1 samples lie in between and show intermediate 
behaviour. The  resistivity of group I and group I1 samples can be fitted with an expression 
of the form: 

R = Ro exp( To  / T ) s  

where RO,  To,  and s are adjustable fitting parameters. The aim of the fitting procedure 
is to determine these parameters with relatively high accuracy, with special care on the 
exponents,  which is supposed to be unknown apriori. In order t o  obtain reliable values 
of the fitting parameters we have compared the following three different methods. 

(i) 6 R  minimum. This method consists of finding the minimum of the mean relative 
error 6 R ,  defined as 

6 R  = U / n >  E I[R, - R, exP(T,llT,) 'llR, I 
where R,  and T,  are the  experimental values, and ,  for each value of s, R ,  and T,, are the  
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Figure 2. Two examples showing fitting 
accuracy of the 6 R  minimum method. The 
inset shows how the parameter s is 
obtained from 6R minimum. 
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best fit parameters. In this respect, s is treated as an externally fixed parameter, which 
in turn can be changed independently. In our case, s was incremented by steps of 0.01 
ranging from 0-1. A typical result is reported in figure 2. The inset of figure 2 shows how 
the parameters is determined from the 6 R  minimum. The fitting accuracy depends on 
the incremental step resolution As, but it is practically overcome by the experimental 
measurement accuracy for As of less than 1 %. 

(ii) Derivative method. The performance of a bolometer is related to a parameter, 
called sensitivity A ,  defined as the logarithmic rate of change of R with T: 

A = -d(logR)/d(log T ) .  

The higher the sensitivity, the higher the responsivity of the bolometer is, i.e. the 
response to an external excitation. The sensitivity A is identically equivalent to the 
reduced energy W :  

which represents the dimensionless activation energy in the VRH conduction regime. 
The derivative method consists of finding the parameter A directly from the slope of 
log(R) against log(T) data points. The advantages of this method is that no functional 
dependence is assumed a priori, the ln(A) against In( T )  plot defines the region where 
VRH occurs, and in that region the slope of the curve gives directly the parameter s 
(In A = --s In T + constant). The disadvantage is that the derivative is very sensitive to 
any variation of the experimental points, and even small local fluctuations are amplified. 
As a consequence, this method is applicable only if the experimental data are noiseless, 
and they follow a well behaved, monotonic function. In any case, the values of A 
obtained are rather scattered and their least square fit usually gives a poor correlation 
coefficient. In our case the point derivative of log(R) against log(T) has been evaluated 
from the incremental ratio of three adjacent points. This procedure excludes the first 
and last data point. 
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Figure 3. Sensitivity A (  T )  against temperature 
as obtained from two different methods. Points, 
derivative method: full curve, polynomial fit. 

Figure 4. Log-log plot of sensitivity A ( T )  against 
temperature of group I and group I1 samples. 

(iii) Polynomial fit. In order to overcome the above mentioned drawback, we have 
carried out a polynomial fit of the expression log(1og R )  against (log T )  assuming a 
functional dependence of the form 

log (log R )  = a + b (log T )  + c (log T ) 2  + . . , 
from which we have 

d(l0g R)/d(log T )  = log R[b + 2~ (log T )  + . . . ]  = -A. 

The advantage of this method is that the log(1og) function acts as a data smoothing 
and therefore the interpolation is much less sensitive to local fluctuations. The result is 
shown in figure 3. The full curve represents the second-order polynomial fit, while the 
points represent values obtained from the derivative method. Notice that the polynomial 
fit looks very like the best fit line through the dotted points. 

In table 1 the values of R,, To, and s obtained from the three different methods are 
reported for comparison, along with their relative per cent errors (6R%) .  As can be 
seen, the three methods are consistent with each other. Moreover, group I samples show 
a T-s dependence with an exponent equal to 0.52 t_ 0.03, while group I1 samples show 
a T-S dependence with s ranging from 0.21 to 0.39. Such deviations from the expected 
theoretical values of the exponent in the VRH conduction regime have already been 
observed in doped semiconductors [ 141, especially at low temperatures. 

In figure 4 we have plotted log(A) against log( T )  along with the theoretical slopzs 
0.5 and 0.25 superposed for comparison. Group I and group I1 samples show an almost 
linear dependence in the whole temperature range, confirming that they show VRH 
conduction. Group I11 samples do not follow an exp( To/T)' law. They are very close to 
the MI transition, and therefore we have tried a fit of the form 

a = a(0) + mTb 

where a(0) is the zero-temperature conductivity. In the mainframe of localization theory 
[15] we expect a positive correction of the a(0) conductivity with exponent f i  = 1, while 
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Table 1. Fitting parameters Ro, I",,, and s obtained from R = R,exp(T,,/T)" with three 
different methods: (i) 6R min; (ii) derivative (3PTS); (iii) polynomial fit (POL). 

S To (K)  Ro (51) 6R (%) 

Sample 6 R  3PTS POL 6R 3PTS POL 8R 3PTS POL 6R 3PTS POL 

E l  0.53 0.55 0.53 5.93 4.97 6.05 
E2 0.56 0.57 0.56 6.25 5.51 6.24 
E3 0.53 0.54 0.53 4.54 3.92 4.62 
E4 0.56 0.56 0.55 5.41 5.32 5.86 
E5 0.53 0.52 0.51 8.58 9.29 10.1 
F4 0.54 0.52 0.54 4.90 5.87 5.04 
F6 0.51 0.52 0.51 6.14 5.24 6.20 
N5 0.46 0.43 0.46 9.27 13.3 9.80 

8.09 
9.46 

10.2 
10.4 
6.06 
9.76 
7.31 

11.4 

F3 0.36 0.33 0.35 15.9 27.8 20.2 3.37 
F5 0.38 0.49 0.38 8.71 2.24 7.83 4.60 
N7 0.24 0.25 0.21 133 553 797 1.63 
H14 0.31 0.33 0.31 19.5 12.6 18.3 2.78 

9.73 7.88 
10.8 9.42 
11.8 10.0 
10.5 9.40 
5.60 4.93 
8.32 9.28 
8.53 7.21 
9.86 10.7 

2.44 2.90 
11.3 4.90 
2.98 0.74 
3.47 2.87 

1.04 1.09 1.04 
0.96 1.23 0.99 
0.52 0.67 0.56 
0.90 1.01 0.88 
1.48 1.73 1.47 
2.59 4.25 2.78 
0.85 0.93 0.87 
2.64 7.92 2.55 

0.84 1.11 0.85 
0.37 2.34 0.38 
2.99 6.25 3.04 
0.43 0.49 0.42 

Table 2. U = u(0) + mT/'. 

Sample a(0) (W'  cm- ' )  m P 6P ("/.) 

1H 1.50 
2H 2.76 
3H 4.00 
4H 4.54 

19H 1.50 

9.13 0.65 2.55 
7.78 0.81 2.45 

13.3 1.32 3.86 
14.1 1.19 3.85 
8.62 0.65 1.58 

Coulomb interaction theory of disordered metals [16] gives p = f and a magnitude m 
which can change sign crossing the M I  transition, depending on whether the Hartree 
term or the exchange term dominates in the electron-electron interaction matrix. The 
result of fitting the experimental data with m and @ as free parameters is reported in 
table 2. The 6R method has been applied, with f l  ranging from 0-2 in steps of 0.01. We 
have also verified that the metallic fit is not applicable to group I1 samples. In fact, in 
that case we obtain negative or null values of a(0). 

The a(0) conductivity is estimated taking into account the geometrical factors of the 
conductive layer. They are W = 2700 ym (width), L = 15 pm (length), andx, = 0.5 ym 
(depth). The conversion factor is estimated to be 0.01 cm. 

From inspection of table 2 we can point out two main considerations. Firstly, the 
values of m are positive and secondly, the ratio u(O)/a, (aM is Mott's minimum metallic 
conductivity [ 171, uM = 20 Q-' cm-' for Si : P) ranges from 0.2-0.07. The corresponding 
values of f l  lie between 1.14 and 0.62 respectively. These values are not in contrast with 
those reported by Rosenbaum et a l [ 9 ]  who found /3 = 2 for a(O)/a, < 0.1, suggesting 
that the form a = a(0) + mTp may not be adequate to model the conductivity behaviour 
of samples very close to the MI transition with a positive correction to the a(0) conduc- 
tivity. 
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Table 3. Corrected values of conductance of group I and I1 samples with U = um + 
l/RO exp - ( To/T)'I2. 

E1-NS 6.90 t 1.9 8.3 t 1.8 

F3 2.27 x lo-' 3.13 (20.2) 9.12 (2.90) 
F5 2.28 x lo-'' 2.48 (7.83) 9.80 (5.01) 
B7 5.87 x lo-'' 1.46 (797) 14.2 (0.74) 
B 14 7.47 x lo-' 1.82 (18.3) 9.83 (2.87) 

Let us now reconsider the group I1 samples. They lie in between the 'well behaved' 
group I samples, which exhibit VRH conduction with exponent 0.5, as for the Coulomb 
interaction model, and the 'metal-like' group 111 samples, which exhibit a zero-tem- 
perature finite conductivity. 

We have supposed that for those samples which show an intermediate behaviour the 
electrical conduction is due to the superposition of two effects: VRH with exponent 0.5, 
and metallic conduction through narrow channels with very small cross sections. The 
combination of the two effects can be expressed as: 

o = U,,, + ( l /Ro)  exp - ( To/T)" .5  

where the metallic term U, must be quite small. but not less than lo-' W', i.e. the 
intrinsic resolution of our measurement system. The results of the best fit obtained from 
the 6 R  method, with om now ranging as a free parameter from 0 to l/R,,,,,, are reported 
in table 3. The values in parentheses are taken from table 1 and have been repeated here 
for comparison. Only samples belonging to group I1 have a significant om contribution, 
as expected. The values of To obtained from table 3 are compared with the theoretical 
value of To  given by the Coulomb interaction model [18]: 

T;  = B e 2 / K a  = 1500 K 

where B is a numerical coefficient (=2.9), e is the electronic charge, K is the static 
dielectric constant (= 12.94 pF cm-' for Si), and a is the characteristic decay length of 
the impurity wavefunction (=26A for S i :P  from Sasaki [19]). In accordance with 
the scaling theory of localization [15], both the impurity radius a and the dielectric 
permittivity K diverge near the MI transition as (1 - N/N,)".'i where v ,  q are critical 
exponents-v = -0.55 and q = -1.15 [9] for a and K respectively. We then expect a 
reduction of Tu,  scaling down as N approaches the critical concentration N,,  as 

T" = T;, (1 - N/N, )"  

with n ,  the critical exponent, equal to -(v + q )  = 1.7. In this respect, the percentage 
deviation of the P concentration from the critical value of 3.74 X 10" cm-3 is estimated 
to be 4 5 %  for group I samples, and 1.7-2.6% for group I1 samples. These values are 
significantly higher than expected from the process control parameters. In fact, ion 
implantation uniformity is specified to be better than 2%,  and all the samples have 
experienced the same annealing cycle simultaneously. In spite of this, a local deviation 
of more than 2% occurs which can be accounted for by clustering of defects, as well as 
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impurities, during the annealing cycle. In fact, dopant clustering is likely to produce 
metallic droplets inside the crystal matrix, while clustering of defects induces acceptor 
states in the band gap of silicon, which in turn correspond to a local enhancement of the 
compensation ratio. Another contribution to local non-uniformity could be due to a 
non-uniform depth impurity distribution. This occurrence was carefully checked and 
avoided during ion implantation by an accurate control of the beam purity. 

4. Discussion 

The junction depth of a silicon sample doped by ion implantation is determined primarily 
by the ion energy, and, for practical purposes, is limited to about 0.5 pm. In the VRH 
conduction regime the hopping length grows as T-', with s = 1 in the Shklovskii-Efros 
(SE) model, or s = 4 in Mott's model. Therefore the question arises whether the con- 
ductivity of shallow-doped samples might become two-dimensional below a certain 
temperature. In the SE theory a change from three- to two-dimensional conduction does 
not affect the exponential factor significantly, while in the Mott model the conductivity 
is expected to behave as exp(Tu/T)1'3. This could justify the behaviour of group I1 
samples, with an exponent close to 0.3. 

An estimate of the mean distance between hopping sites, R,j, in the mainframe of 
the SE model, i.e.. in the worst case for the R,, divergence, is carried out assuming that 
the density of states (DOS) vanishes at the Fermi level as: 

g(E) = a .v3/e6~* 

where a is a numerical coefficient ( a  = 3/n), K is the dielectric permittivity of silicon 
ande is the electronic charge. The total number of states in a band of width E ( )  is: 

The hopping resistivity can be written in the form: 

2 

where Tis the absolute temperature, kB is the Boltzmann constant, Cis the characteristic 
decay length of the impurity wavefunction, and N-'I3(&) represents the mean distance 
between hopping sites. The first term of the exponential expresses the contribution of 
the quantum tunnelling between partial overlapping electronic wavefunctions. The 
second term is the Boltzmann factor exp(s/k,T) of the jumping probability between 
two states having an energy difference E .  

The Mott criterion of the optimum band width E"( T) says that the resistivity has a 
minimum for E = E ~ ( T )  = 2kBT/N'/3(~o)E. From the above conditions we have: 

As already mentioned, both the correlation length E and the dielectric permittivity K 
diverge as Napproaches N,. However, assuming 6 = a = 26 A, and K = 12.94 pF cm-', 
we can estimate an upper bound limit for the band width of 3.0 x TI/* meV, to which 
corresponds a density of states g(Eo) = 4.8 x 10'' x TeV-' ~ m - ~ .  This latter value is 
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two orders of magnitude less than the free electron model density of states. For the 
hopping length R ,  we have an upper bound limit of 

R i j ( ~ O )  = N ( E ~ ) - ' / ~  = 460T-'/2 (A) 
(for Si :As,  witha = 16 A, we have R,, = 370T-'I2 A). Although thisisaroughestimation 
of the hopping length, the result suggests that we should not be concerned with two- 
dimensional effects. 

The Coulomb interaction model of SE predicts a decrease of the DOS near the Fermi 
energy, and the opening of a so-called 'Coulomb gap' at low temperatures. The fact that 
we observe a T-''2 dependence of the resistance in the whole temperature range implies 
that the Coulomb interaction is dominant up to 1 K. On the other hand, one necessary 
condition for the manifestation of the Coulomb gap in doped semiconductors is the 
presence of some degree of compensation. In our samples the original compensation 
factor K is of the order of but, because of the doping process by ion implantation, 
we can expect an increase of the actual compensation factor due to the introduction of 
crystal defects with energy levels located in mid-gap. Radiation damage induced defects 
are only partly recovered by the annealing cycle [20]. Agglomeration of defects, 
especially vacancies and interstitials, most likely occurs in the form of dislocation loops 
[21, 221. Crystal defects are electrically inactive at room temperature because their 
energy is much higher than the impurity ionization energy. However, their presence can 
increase the electron-hole (e-h) generation-recombination rate in p n  junctions, and 
then give rise to leakage currents in reverse biased diodes. At low temperatures they 
can act as acceptor centres for the impurity band. The density of states at the Fermi level 
in the absence of the Coulomb gap is 

where K is the ratio between acceptor and donor centres, N D  is the donor concentration, 
and is the interaction energy between adjacent donor sites given by 

E~ = e 2 N g 3 K ' .  

Assuming g&) equal to g(EO), we have K = 0.025 (2.5%). That is the minimum value 
required in order to observe a Coulomb gap in our experimental conditions. This value 
can rise up to 25% if the divergence of the dielectric permittivity is taken into account 
~ 3 1 .  

5. Summary and conclusions 

In this work we have examined the conductivity behaviour of phosphorus-implanted 
silicon bolometers in the VRH regime where the exp( TOIT)$ law holds. A new method to 
extract the parameters from the d(1og R )  against d(1og T )  plot has been presented, and 
its validity checked against two other fitting methods. The experimental data are in 
agreement with the Shklovskii-Efros model of conductivity in disordered systems, which 
predicts the opening of a Coulomb gap in the density of states of the impurity band. P- 
implanted silicon bolometers behave like compensated semiconductors. The mani- 
festation of the Coulomb gap is thought to be due to the presence of residual defects left 
after partial recovery of the implantation damage. Such defects act as acceptor centres 
at low temperatures. Their presence can also justify the observed local dishomogeneities 
in the low-temperature resistivity. The samples which exhibit intermediate behaviour 
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between metal-like and insulating semiconductors, can be modelled with a shunt resist- 
ance in parallel with an active layer following the classic exp( To/T)''' law. This indicates 
that both the insulator and the metal phase can coexist in non-homogeneous samples, 
and then induce erroneous results if the two components cannot be discriminated. 
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